logo头像
Snippet 博客主题

Spark学习之路 (十九)SparkSQL的自定义函数UDF

** Spark学习之路 (十九)SparkSQL的自定义函数UDF:** <Excerpt in index | 首页摘要>

​ Spark学习之路 (十九)SparkSQL的自定义函数UDF

<The rest of contents | 余下全文>

在Spark中,也支持Hive中的自定义函数。自定义函数大致可以分为三种:

  • UDF(User-Defined-Function),即最基本的自定义函数,类似to_char,to_date等
  • UDAF(User- Defined Aggregation Funcation),用户自定义聚合函数,类似在group by之后使用的sum,avg等
  • UDTF(User-Defined Table-Generating Functions),用户自定义生成函数,有点像stream里面的flatMap

自定义一个UDF函数需要继承UserDefinedAggregateFunction类,并实现其中的8个方法

示例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import org.apache.spark.sql.Row
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types.{DataType, StringType, StructField, StructType}

object GetDistinctCityUDF extends UserDefinedAggregateFunction{
/**
* 输入的数据类型
* */
override def inputSchema: StructType = StructType(
StructField("status",StringType,true) :: Nil
)
/**
* 缓存字段类型
* */
override def bufferSchema: StructType = {
StructType(
Array(
StructField("buffer_city_info",StringType,true)
)
)
}
/**
* 输出结果类型
* */
override def dataType: DataType = StringType
/**
* 输入类型和输出类型是否一致
* */
override def deterministic: Boolean = true
/**
* 对辅助字段进行初始化
* */
override def initialize(buffer: MutableAggregationBuffer): Unit = {
buffer.update(0,"")
}
/**
*修改辅助字段的值
* */
override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
//获取最后一次的值
var last_str = buffer.getString(0)
//获取当前的值
val current_str = input.getString(0)
//判断最后一次的值是否包含当前的值
if(!last_str.contains(current_str)){
//判断是否是第一个值,是的话走if赋值,不是的话走else追加
if(last_str.equals("")){
last_str = current_str
}else{
last_str += "," + current_str
}
}
buffer.update(0,last_str)

}
/**
*对分区结果进行合并
* buffer1是机器hadoop1上的结果
* buffer2是机器Hadoop2上的结果
* */
override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
var buf1 = buffer1.getString(0)
val buf2 = buffer2.getString(0)
//将buf2里面存在的数据而buf1里面没有的数据追加到buf1
//buf2的数据按照,进行切分
for(s <- buf2.split(",")){
if(!buf1.contains(s)){
if(buf1.equals("")){
buf1 = s
}else{
buf1 += s
}
}
}
buffer1.update(0,buf1)
}
/**
* 最终的计算结果
* */
override def evaluate(buffer: Row): Any = {
buffer.getString(0)
}
}

注册自定义的UDF函数为临时函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
def main(args: Array[String]): Unit = {
/**
* 第一步 创建程序入口
*/
val conf = new SparkConf().setAppName("AralHotProductSpark")
val sc = new SparkContext(conf)
val hiveContext = new HiveContext(sc)  //注册成为临时函数
hiveContext.udf.register("get_distinct_city",GetDistinctCityUDF)
  //注册成为临时函数
hiveContext.udf.register("get_product_status",(str:String) =>{
var status = 0
for(s <- str.split(",")){
if(s.contains("product_status")){
status = s.split(":")(1).toInt
}
}
})
}